Novosibirsk State University Journal of Information Technologies
Scientic Journal

ISSN 2410-0420 (Online), ISSN 1818-7900 (Print)

Switch to
Russian

All Issues >> Contents: Volume 12, Issue No 4 (2014)

Photonics of isolated dielectric particles of arbitrary 3d shape – a new direction of optical information technologies
I. V. Minin, O. V. Minin

Siberian State Academy of Geodesy

UDC code: 535.421

Abstract
At the first time it has been shown that the photonic jet can be formed by dielectric particle having no axial symmetry of the spatial form as in the «reflection» as in the «transmitive» mode. Examples of numerical simulation photonic terajets formation from the particles in the form of an axisymmetric cone, a pyramid, a bar with a triangular profile are discussed. It is shown that by selecting of particle shape the parameters and the shape of the photon jet can be adjusted.

Key Words
the dielectric particle, the wave front, numerical simulation, terajet, photonic nanojet

How to cite:
Minin I. V., Minin O. V. Photonics of isolated dielectric particles of arbitrary 3d shape – a new direction of optical information technologies // Vestnik NSU Series: Information Technologies. - 2014. - Volume 12, Issue No 4. - P. 69-70. - ISSN 1818-7900. (in Russian).

Full Text in Russian

Available in PDF

References
1. Naruse M. Nanophotonic Information Physics. Springer, 2014. 250 p.
2. Soifer V. A. Difraktcionnaya nanofotonika i perspektivnyye informatcionnyye tekhnologii // Vestn. RAN. 2014. T. 84, № 1. S. 11–22.
3. Born M., Wolf. Principles of Optics. 7th ed. Cambridge Univ. Press, 1999. 952 p.
4. Minin I. V., Minin O. V. Experimental verification 3D subwavelength resolution beyond the diffraction limit with zone plate in millimeter wave // Microwave and Optical Technology Letters. 2014. № 56 (10). P. 2436–2439.
5. Pendry J. B. Negative Refraction Makes a Perfect Lens // Phys. Rev. Lett. 2000. № 85 (18). P. 3966–3969.
6. Fang N., Lee H., Sun C., Zhang X. Sub-Diffraction-Limited Optical Imaging with a Silver Superlens // Science. 2005. Vol. 308. P. 534–537.
7. Liu Z., Lee H., Xiong Y., Sun C., Zhang X. Optical Hyperlens Magnifying Sub-diffractionlimited Objects // Science. 2007. Vol. 315. P. 1686.
8. Mansfield S. M., Kino G. S. Solid immersion microscope // Appl. Phys. Lett. 1990. №57 (24). P. 2615–2616.
9. Minin I. V., Minin O. V., Gagnon N., Petosa A. // Proceedings of Joint 31st International Conference on Infrared Millimeter Waves and 14th International Conference Terahertz Electronics (IEEE, Shanghai, China, 2006). P. 170.
10. Minin I. V., Minin O. V. 3D diffractive lenses to overcome the 3D Abbe subwavelength diffraction limit // Chin. Opt. Lett. 2014. № 12 (6). P. 060014.
11. Minin I. V., Minin O. V., Triandaphilov Y. R., Kotlyar V. V. Focusing Properties of Two Types of Diffractive Photonic Crystal Lens // Optical Memory & Neural Networks (Information Optics). 2008. Vol. 17, № 3. P. 244–248.
12. Lu Y. F., Zhang L., Song W. D., Zheng Y. W., Luk’yanchuk B. S. Laser Writing of a Subwavelength Structure on Silicon (100) Surfaces with Particle-Enhanced Optical Irradiation // J. Exp. Theor. Phys. Lett. 2000. № 72 (9). P. 457–459.
13. Hao X., Kuang C., Liu X., Zhang H., Li Y. Microsphere based microscope with optical super-resolution capability // Appl. Phys. Lett. 2011. № 99 (20). P. 203102–203103.
14. Wang Z., Guo W., Li L., Luk’yanchuk B., Khan A., Liu Z., Chen Z., Hong M. Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope // Nat. Commun. 2011. № 2. P. 218-221.
15. Khyulst G. van de. Rasseyaniye sveta malymi chastitcami / Per. s angl. T. V. Vodopyanovoi, pod red. V. V. Soboleva. M.: Izd-vo inostr. lit., 1961.
16. Chen Z., Taflove A., Backman V. Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique // Optics Express. 2004. № 12 (7). P. 1214–1220.
17. Li X., Chen Z., Taflove A., Backman V. Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets // Opt. Express. 2005. № 13 (2). P. 526–533.
18. Heifetz A., Kong S.-C., Sahakian A. V., Taflove A., Backman V. Photonic Nanojets // J. Comput. Theor. Nanosci. 2009. No. 6 (9). P. 1979–1992.
19. Liu C., Chang L., Yang L. Photonic nanojet from elliptical particles // In Proceeding of the 9th IEEE International Conference Nano/Micro Engineered and Molecular Systems. 2014. P. 536.
20. Jalalia T., Erni D. Highly confined photonic nanojet from elliptical particles // Journal of Modern Optics. 2014. № 61 (13). P. 1069–1076.
21. Mendez-Ruiz C., Simpson J. J. Detection of embedded ultrasubwavelength-thin dielectric features using elongated photonic nanojets // Optics Express. 2010. № 18 (16). P. 16805–16812.
22. Liu C. Ultra-elongated photonic nanojets generated by a graded-index microellipsoid // Electromagnet. Res. Lett. 2013. Vol. 37. P. 153–165.
23. Geints Y. E., Zemlyanov A. A., Panina E. K. Photonic nanojet calculations in layered radially inhomogeneous micrometer-sized spherical particles // J. Opt. Soc. Am. 2011. № 28 (8). P. 1825–1830.
24. Liu C.-Y., Chang Li-Jen, Yang Lung-Jieh. Photonic Nanojet in Non-spherical Microparticles // Proc. of the 9th IEEE Int. conf. On Nano/Micro Eng. And Molecular Systems, April 13-16, 2014, Hawaii, USA, P. 536–538.
25. Liu Cheng-Yang. Photonic nanojet shaping of dielectric non-spherical microparticles // Physica E 64. 2014. P. 23–28.
26. Bonod N., Wenger J., Gerard D., Stout B., Rigneault H., Popov E. Three-dimensional confinement of light with dielectric microspheres // Opt. Express. 2009. Vol. 17. № 4. P. 2089-2094.
27. Kong S.-C., Sahakian A., Heifetz A., Taflove A., Backman V. Robust detection of deeply subwavelength pits in simulated optical data-storage disks using photonic jets // Appl. Phys. Lett. 2008. Vol. 92. P. 211102.
28. Zhao L., Ong C. K. Direct observation of photonic jets and corresponding backscattering enhancement at microwave frequencies // J. Appl. Phys. 2009. Vol. 105. P. 123512.
29. Heifetz A., Huang K., Sahakian A. V., Li X., Taflove A., Backman V. Experimental confirmation of backscattering enhancement induced by a photonic jet // Appl. Phys. Lett. 2006. Vol. 89. P. 221118.
30. Heifetz A., Simpson J. J., Kong S.-C. et al. Subdiffraction optical resoluti on of a gold nanosphere located within the nanojet of a Mie-resonant dielectric microsphere // Optics Express. 2007. Vol. 15. N. 25. P. 17334–17342.
31. Ju D., Pei H., Jiang Y., Sun X. Controllable and enhanced nanojet effects excited by surface plasmon polariton // Appl. Phys. Lett. 2013. v. 102. P. 171109.
32. Geintc Yu., Zemlyanov A., Panina E. Mikrochastitca v intensivnom svetovom pole. Palmarium Academic Publishing. 2012.
33. Kim Myun-Sik, Scharf Toralf, Mühlig Stefan, Rockstuhl Carsten, Herzig Hans Peter. Engineering photonic nanojets // OPTICS EXPRESS. 2011. Vol. 19, № 11. P. 10206.
34. Ding Hongxing, Dai Lili, Yan Changchun. Properties of the 3D photonic nanojet based on the refractive index of surroundings // CHINESE OPTICS LETTERS. 2010. Vol. 8, № 7. P. 131–137.
35. Simonenko V. A. Yavleniya s kumulyatciyei plotnosti energii // Zababakhinskiye nauchnyye chteniya: Sb. materialov XII Mezhdunar. konf. 2–6 iyunya 2014. Snezhinsk, 2014. 400 s.
36. Pacheco-Pena V., Beruete M., Minin I. V., Minin O. V. Terajets produced by 3D dielectric cuboids // Appl. Phys. Lett. 2014. Vol. 105. P. 084102.
37. Pacheco-Pena V., Beruete M., Minin I. V., Minin O. V. Multifrequency focusing and wide angular scanning of Terajets // Optic Letters. Accepted for publication. 2014.
38. Minin I. V., Minin O. V. Tekhnologiya vychislitelnogo eksperimenta i matematicheskoye modelirovaniye elementov difraktcionnoi optiki millimetrovogo i submillimetrovogo diapazonov // Informatcionnyye sistemy i tekhnologii: Materialy Mezhdunar. konf. Novosibirsk, 2000. T. 1. S. 124–130.
39. Antcygin V. D., Mamrashev A. A., Nikolayev N. A., Potaturkin O. I. Malogabaritny teragertcovy spektrometr s ispolzovaniyem vtoroi garmoniki femtosekundnogo volokonnogo lazera // Avtometriya. 2010. T. 46, № 3. S. 110–117.
40. Minin O. V., Minin I. V. Diffractive optics of millimetre waves. Boston; London, 2004. 396 p.

Publication information
Main title Vestnik NSU Series: Information Technologies, Volume 12, Issue No 4 (2014).
Parallel title: Novosibirsk State University Journal of Information Technologies Volume 12, Issue No 4 (2014).

Key title: Vestnik Novosibirskogo gosudarstvennogo universiteta. Seriâ: Informacionnye tehnologii
Abbreviated key title: Vestn. Novosib. Gos. Univ., Ser.: Inf. Tehnol.
Variant title: Vestnik NGU. Seriâ: Informacionnye tehnologii

Year of Publication: 2014
ISSN: 1818-7900 (Print), ISSN 2410-0420 (Online)
Publisher: Novosibirsk State University Press
DSpace handle


|Home Page| |All Issues| |Information for Authors| |Journal Boards| |Ethical principles| |Editorial Policy| |Contact Information| |Old Site in Russian|

inftech@vestnik.nsu.ru
© 2006-2017, Novosibirsk State University.