Novosibirsk State University Journal of Information Technologies
Scientic Journal

ISSN 2410-0420 (Online), ISSN 1818-7900 (Print)

Switch to
Russian

All Issues >> Contents: Volume 12, Issue No 4 (2014)

Vegetable cover type classification using hyperspectral remote sensing
S. M. Borzov, O. I. Potaturkin

Institute of Automation and Electrometry of SB RAS
Novosibirsk State University

UDC code: 528.72:004.93

Abstract
In paper potential and restrictions of application of hyperspectral images at the Earth surface monitoring are discussed. Results of research of classification methods of vegetative cover types based on comparison of reflection spectra of researched and reference objects of various classes are submitted. The estimation of methods efficiency is executed on the basis of results of remote sensing data processing and ground-truth observations comparison.

Key Words
reflection spectra, vegetative cover type classification, hyperspectral remote sensing

How to cite:
Borzov S. M., Potaturkin O. I. Vegetable cover type classification using hyperspectral remote sensing // Vestnik NSU Series: Information Technologies. - 2014. - Volume 12, Issue No 4. - P. 13-22. - ISSN 1818-7900. (in Russian).

Full Text in Russian

Available in PDF

References
1. Lupyan E. A., Savorsky V. P., Shokin Yu. I. i dr. Sovremennyye podkhody i organizatciya raboty s dannymi distantcionnogo zondirovaniya Zemli dlya resheniya nauchnykh zadach // Sovremennyye problemy distantcionnogo zondirovaniya Zemli iz kosmosa. 2013. T. 9, № 5. S. 45–54.
2. Bychkov I. V., Plyusnin V. M., Ruzhnikov G. M. i dr. Sozdaniye infrastruktury prostranstvennykh dannykh v upravlenii regionov // Geografiya i prirodnyye resursy. 2013. № 2. S. 145–150.
3. Pestunov I. A., Sinyavsky Yu. N. Algoritmy klasterizatcii v zadachakh segmentatcii sputnikovykh izobrazheny // Vestn. Kem. gos. un-ta. 2012. № 4/2 (52). S. 110–125.
4. Borzov S. M., Kozik V. I., Potaturkin O. I. Poisk obyyektov neprirodnogo proiskhozhdeniya na osnove mnogospektralnoi obrabotki dannykh distantcionnogo zondirovaniya Zemli // Avtometriya. 2010, № 6. S. 9–15.
5. Potaturkin O. I., Borzov S. M., Potaturkin A. O., Uzilov S. B. Metody i tekhnologii obrabotki multi- i giperspektralnykh dannykh distantcionnogo zondirovaniya Zemli vysokogo razresheniya // Vychislitelnyye tekhnologii IVT SO RAN. 2013. T. 18. Spetc. vypusk. S. 53–60.
6. Ostrikov V. H., Plakhotnikov O. V., Kiriyenko A. V. Obrabotka giperspektralnykh dannykh, poluchayemykh s aviatcionnykh i kosmicheskikh nositelei // Sovremennyye problemy distantcionnogo zondirovaniya Zemli iz kosmosa. 2013. T. 10, № 2. S. 243–251.
7. Chan T. H., Ambikapathi A., Ma W. K., Chi C. Y. Robust Affine Set Fitting and Fast Simplex Volume Max-Min for Hyperspectral Endmember Extraction // IEEE Trans. Geoscience and Remote Sensing. 2013. Vol. 51. P. 3982–3997.
8. Cawse-Nicholson K., Damelin S. B., Robin A., Sears M., Determining the Intrinsic Dimension of a Hyperspectral Image Using Random Matrix Theory // IEEE Trans. Image Processing. 2013. Vol. 22. P. 1301–1310.
9. Plaza A., Du Q., Bioucas-Dias J., Jia X., Kruse F. Foreword to the special issue on spectral unmixing of remotely sensed data // IEEE transactions on geoscience and remote sensing. 2011. Vol. 49. No. 11. P. 4103–4110.
10. Cho M. A., Skidmore A. K. A new technique for extracting the red edge position from hyperspectral data: The linear extrapolation method // Remote Sensing of Environment. 2006. Vol. 101 (2). P. 181–193.
11. Kruse F. A., Lefkoff A. B., Boardman J. B., Heidebrecht K. B., Shapiro A. T., Barloon P. J., Goetz A. F. H. The Spectral Image Processing System (SIPS) – Interactive Visualization and Analysis of Imaging Spectrometer Data // Remote Sensing of Environment. 1993. Vol. 44. P. 145–163.
12. Du H., Chang C., Ren H., Chang C., Jensen J., D’Amico F. New hyperspectral discrimination measure for spectral characterization // Optical Engineering. 2004. Vol. 43 (8). P. 1777–1786.
13. Joachims T. Making large scale SVM learning practical. Universitaet Dortmund Press, 1999.
14. Richards J. A. Remote Sensing Digital Image Analysis. Springer-Verlag, Berlin, 2013.

Publication information
Main title Vestnik NSU Series: Information Technologies, Volume 12, Issue No 4 (2014).
Parallel title: Novosibirsk State University Journal of Information Technologies Volume 12, Issue No 4 (2014).

Key title: Vestnik Novosibirskogo gosudarstvennogo universiteta. Seriâ: Informacionnye tehnologii
Abbreviated key title: Vestn. Novosib. Gos. Univ., Ser.: Inf. Tehnol.
Variant title: Vestnik NGU. Seriâ: Informacionnye tehnologii

Year of Publication: 2014
ISSN: 1818-7900 (Print), ISSN 2410-0420 (Online)
Publisher: Novosibirsk State University Press
DSpace handle


|Home Page| |All Issues| |Information for Authors| |Journal Boards| |Ethical principles| |Editorial Policy| |Contact Information| |Old Site in Russian|

inftech@vestnik.nsu.ru
© 2006-2017, Novosibirsk State University.