Novosibirsk State University Journal of Information Technologies
Scientic Journal

ISSN 2410-0420 (Online), ISSN 1818-7900 (Print)

Switch to
Russian

All Issues >> Contents: Volume 11, Issue No 2 (2013)

The generalization ability test of linear prediction methods
Andrei Sergeyevich Taskin

Siberian Federal University
UDC code: 004.67

Abstract
Traditional linear prediction methods were researched. Persistent dependence between the ratio of training error to generalization error and the ratio of objects count to features count of the dataset was found. The testing was produced with artificial and real datasets.

Key Words
generalization error, training error, principal component analysis, linear regression, data mining

How to cite:
Taskin A. S. The generalization ability test of linear prediction methods // Vestnik NSU Series: Information Technologies. - 2013. - Volume 11, Issue No 2. - P. 113-120. - ISSN 1818-7900. (in Russian).

Full Text in Russian

Available in PDF

References
1. Haykin S. Neural Networks and Learning Machines. N. Y.: Prentice Hall, 2009. 936 p.
2. Levitin A. V. Algoritmy: vvedeniye v razrabotku i analiz. M.: Vilyams, 2006. 576 s.
3. Motulsky H., Christopoulos A. Fitting Models to Biological Data Using Linear And Nonlinear Regression. A Practical Guide to Curve Fitting. Oxford: Univ. Press, 2004. 351 p.
4. Itckhoki O. Vybor modeli i paradoksy prognozirovaniya // Kvantil. 2006. № 1. C. 43–51.
5. Gorban A. N., Kegl B., Wunsch D., Zinovyev A. Y. Principal Manifolds for Data Visualisation and Dimension Reduction. Berlin; Heidelberg; N. Y.: Springer, 2007. Vol. 58. 340 p.
6. Vorontcov K. V. Kombinatorny podkhod k otcenke kachestva obuchayemykh algoritmov // Ma tematicheskiye voprosy kibernetiki / Pod red. O. B. Lupanova. M.: Fizmatlit, 2004. T. 13. S. 5–36.
7. Dreiper N., Smit G. Prikladnoi regressionny analiz. M.: Vilyams, 2007. 912 s.
8. Pearson K. On Lines and Planes of Closest Fit to Systems of Points in Space // Philosophical Magazine. 1901. Vol. 2 (11). P. 559–572.
9. Aivazyan S. A., Bukhshtaber V. M., Enyukov I. S., Meshalkin L. D. Prikladnaya statistika. Klassifikatciya i snizheniye razmernosti. M.: Finansy i statistika, 1989. 607 s.
11. Friedman J. Multivariate Adaptive Regression Splines // Annals of Statistics. 1991. Vol. 19. P. 1–141.

Publication information
Main title Vestnik NSU Series: Information Technologies, Volume 11, Issue No 2 (2013).
Parallel title: Novosibirsk State University Journal of Information Technologies Volume 11, Issue No 2 (2013).

Key title: Vestnik Novosibirskogo gosudarstvennogo universiteta. Seriâ: Informacionnye tehnologii
Abbreviated key title: Vestn. Novosib. Gos. Univ., Ser.: Inf. Tehnol.
Variant title: Vestnik NGU. Seriâ: Informacionnye tehnologii

Year of Publication: 2013
ISSN: 1818-7900 (Print), ISSN 2410-0420 (Online)
Publisher: Novosibirsk State University Press
DSpace handle


|Home Page| |All Issues| |Information for Authors| |Journal Boards| |Ethical principles| |Editorial Policy| |Contact Information| |Old Site in Russian|

inftech@vestnik.nsu.ru
© 2006-2017, Novosibirsk State University.