Novosibirsk State University Journal of Information Technologies
Scientic Journal

ISSN 2410-0420 (Online), ISSN 1818-7900 (Print)

Switch to
Russian

All Issues >> Contents: Volume 10, Issue No 4 (2012)

Formal methods of authorship attribution
T. V. Batura

AP Ershov Institute of Informatics Systems

UDC code: 519.68; 681.513.7; 612.8.001.57; 007.51.52

Abstract
This paper reviews the methods used for attribution of texts. The paper also provides a description of the popular software systems to determine the author's style, focused on the Russian language. An attempt was made to produce their comparative analysis, to identify features and drawbacks of approaches. The analysis of syntactic, lexical-phraseological and stylistic levels of text is the most interesting and the most difficult. Expert analysis of the author's style is a time consuming process, so the attention is paid to the formal methods of attribution. Currently, for establishing the authorship of texts following methods are used: the approaches of pattern recognition theory, methods of mathematical statistics and probability theory, neural network algorithms, cluster analysis algorithms, etc. Among the problems hampering research on attribution, the problem of choice of text parameters and sampling problem of reference texts are important. Further research is needed to find a new or improving of existing methods of text attribution, to search for characteristics that clearly separate styles of the authors, including short texts and small sample size.

Key Words
classification of texts, author's style, formal parameters of the text, authorship attribution, text attribution

How to cite:
Batura T. V. Formal methods of authorship attribution // Vestnik NSU Series: Information Technologies. - 2012. - Volume 10, Issue No 4. - P. 81-94. - ISSN 1818-7900. (in Russian).

Full Text in Russian

Available in PDF

References
1. Romanov A. S. Metodika i programmny kompleks dlya identifikatcii avtora neizvestnogo teksta: Avtoref. dis. … kand. tekhn. nauk. Tomsk, 2010. 26 s.
2. Rogov A. A., Gurin G. B., Kotov A. A., Sidorov Yu. V., Surovtcova T. G. Programmny kompleks SMALT // Elektronnyye biblioteki: perspektivnyye metody i tekhnologii, elektronnyye kollektcii: Trudy Kh Vseros. nauch. konf. «RCDL'2008». Dubna, 2008. S. 155–160.
3. Markov A. A. Ob odnom primenenii statisticheskogo metoda // Izvestiya Imperatorskoi Akademii nauk. Ser. 6. 1916. T. 10, № 4. S. 239–242.
4. Fomenko V. P., Fomenko T. G. Avtorsky invariant russkikh literaturnykh tekstov // Novaya khronologiya Gretcii: Antichnost v Srednevekovye. M.: MGU, 1995. 422 s.
5. Khmelev D. V. Raspoznavaniye avtora teksta s ispolzovaniyem tcepei A. A. Markova // Vestn. MGU. Ser. 9: Filologiya. 2000. № 2. S. 115–126.
6. Khmelev D. V. Klassifikatciya i razmetka tekstov s ispolzovaniyem metodov szhatiya dannykh // Vse o szhatii dannykh, izobrazheny i video. 2003. URL: http://compression.ru/download/articles/classif/intro.html
7. Kukushkina O. V., Polikarpov A. A., Khmelev D. V. Opredeleniye avtorstva teksta s ispolzovaniyem bukvennoi i grammaticheskoi informatcii // Problemy peredachi informatcii. M.: Nauka, 2001. T. 37, № 2. S. 96–108.
8. Shevelev O. G. Razrabotka i issledovaniye algoritmov sravneniya stilei tekstovykh proizvedeny: Avtoref. dis. … kand. tekhn. nauk. Tomsk, 2006. 18 s.
9. Sevbo I. P. Graficheskoye predstavleniye sintaksicheskikh struktur i stilisticheskaya diagnostika. Kiyev: Nauk. dum., 1981. 192 s.
10. Martynenko G. Ya. Osnovy stilemetrii. L.: LGU, 1988. 170 s.
11. Rogov A. A., Sidorov Yu. V., Korol A. V. Avtomatizirovannaya sistema obrabotki i analiza literaturnykh tekstov SMALT // Trudy i materialy II Mezhdunar. kongressa issledovatelei russkogo yazyka «Russky yazyk: istoricheskiye sudby i sovremennost». M: MGU, 2004. S. 485–486.
12. Morozov N. A. Lingvisticheskiye spektry: sredstvo dlya otlicheniya plagiatov ot istinnykh proizvedeny togo ili drugogo izvestnogo avtora. Stilemetrichesky etyud // Izvestiya Otdela russkogo yazyka i slovesnosti Imperatorskoi Akademii nauk. 1915. T. 20, kn. 4. S. 93–127.
13. Shevelev O. G. Metody avtomaticheskoi klassifikatcii tekstov na estestvennom yazyke: Ucheb. posobiye. Tomsk: TML-Press, 2007. 144 s.
14. Romanov A. S., Meshcheryakov R. V. Identifikatciya avtora teksta s pomoshchyu apparata opornykh vektorov // Kompyuternaya lingvistika i intellektualnyye tekhnologii: po materialam ezhegodnoi Mezhdunarodnoi konferentcii «Dialog-2009». M.: RGGU, 2009. Vyp. 8, № 15. S. 432–437.

Publication information
Main title Vestnik NSU Series: Information Technologies, Volume 10, Issue No 4 (2012).
Parallel title: Novosibirsk State University Journal of Information Technologies Volume 10, Issue No 4 (2012).

Key title: Vestnik Novosibirskogo gosudarstvennogo universiteta. Seriâ: Informacionnye tehnologii
Abbreviated key title: Vestn. Novosib. Gos. Univ., Ser.: Inf. Tehnol.
Variant title: Vestnik NGU. Seriâ: Informacionnye tehnologii

Year of Publication: 2012
ISSN: 1818-7900 (Print), ISSN 2410-0420 (Online)
Publisher: Novosibirsk State University Press
DSpace handle


|Home Page| |All Issues| |Information for Authors| |Journal Boards| |Ethical principles| |Editorial Policy| |Contact Information| |Old Site in Russian|

inftech@vestnik.nsu.ru
© 2006-2017, Novosibirsk State University.