Novosibirsk State University Journal of Information Technologies
Scientic Journal

ISSN 2410-0420 (Online), ISSN 1818-7900 (Print)

Switch to
Russian

All Issues >> Contents: Volume 10, Issue No 4 (2012)

Methods of social networks analysis
T. V. Batura

A.P.Ershov Institute of Informatics Systems SB RAS
UDC code: 519.68; 681.513.7; 612.8.001.57; 007.51/.52

Abstract
This work is dedicated to social network analysis. There are four main research areas: structural, resource, regulatory, and dynamic. For the solving of the problems in social network analysis following methods are used: graph and stochastic models, models of network evolution, methods involving ontologies, structural and relational models, machine learning methods, network visualization techniques, etc. The article also describes the most popular computer social networks and some software applications to analyze them. It is identified some possible paths of research: the creation of an integrated theory of social networks, adaptation of methods of natural language text processing to the online content, etc.

Key Words
cenrality, data mining, graph of network, network model, social networks analysis

How to cite:
Batura T. V. Methods of social networks analysis // Vestnik NSU Series: Information Technologies. - 2012. - Volume 10, Issue No 4. - P. 13-28. - ISSN 1818-7900. (in Russian).

Full Text in Russian

Available in PDF

References
1. Churakov A. N. Analiz sotcialnykh setei // SotcIs. 2001. № 1. S. 109–121.
2. Charu C. Aggarwal. Social Network Data Analytics. 2011. 520 p.
3. Milgram S. The Small World Problem // Psychology Today. 1967. Vol. 2. R. 60–67.
4. Granovetter M. S. The Strength of Weak Ties // American Journal of Sociology. 1973. Vol. 78. No. 6. P. 1360–1380.
5. Kleinberg J. M. Authoritative Sources in a Hyperlinked Environment // J. ACM. 1999. Vol. 46. No. 5. P. 604–632.
6. Johnson J., Ironsmith M. Assessing Children's Sociometric Status: Issues and the Application of Social Network Analysis // Journal of Group Psychotherapy, Psychodrama & Sociometry. 1994. Vol. 47. Is. 1. P. 36–49.
7. Gyöngyi Z., Garcia-Molina H., Pedersen J. Combating Web Spam with TrustRank // Proceedings of the International Conference on Very Large Data Bases. 2004. Vol. 30. P. 576.
8. Davern M. Social Networks and Economic Sociology: A Proposed Research Agenda for a More Complete Social Science // American Journal of Economics & Sociology. 1997. Vol. 56. Is. 3. P. 287–302.
9. Koren Y. On Spectral Graph Drawing // Proceedings of the 9th International Computing and Combinatorics Conference. Springer, 2003. P. 496–508.
10. Fortunato S. Community Detection in Graphs // Phys. Rep. 2010. Vol.486. No. 3–5. P. 75–174.
11. Wasserman S., Faust K. Social Network Analysis: Methods And Applications. N. Y.: Cambridge University Press, 1994. 825 p.
12. Jensen D., Neville J. Data Mining in Social Networks // Proceedings of the National Academy of Sciences Symposium on Dynamic Social Network Analysis. 2002. P. 289–302.
13. Bonchi F., Castillo C., Gionis A., Jaimes A. Social Network Analysis and Mining for Business Applications // ACM TIST. 2011. Vol. 2 (3). P. 22–58.
14. Hanneman R. Computer-Assisted Theory Building: Modeling Dynamic Social Systems. Riverside, CA: University of California, Riverside, 1988.
15. Leskovec J., Kleinberg J., Faloutsos C. Graphs over Time: Densification Laws, Shrinking Diameters and Possible Explanations // Proceedings of the 11th ACM SIGKDD International Conference on Knowledge Discovery in Data Mining (KDD). N. Y., 2005. P. 177–187.
16. Leskovec J., Backstrom L., Kumar R., Tomkins A. Microscopic Evolution of Social Networks // Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. N. Y., 2008. P. 462–470.
17. Tantipathananandh C., Berger-Wolf T., Kempe D. A Framework for Community Identification in Dynamic Social Networks // Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. N. Y.: ACM Press, 2007. P. 717–726.
18. Sun J., Faloutsos C., Papadimitriou S., Yu P. Graphscope: Parameter-Free Mining of Large Time-Evolving Graphs // Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. N. Y., 2007. P. 687–696.
19. Ferlez J., Faloutsos C., Leskovec J., Mladenic D., Grobelnik M. Monitoring Network Evolution Using MDL // Proceedings of the International Conference on Data Engineering. 2008. P. 1328–1330.
20. Berlingerio M., Bonchi F., Bringmann B., Gionis A. Mining Graph Evolution Rules // Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases. Lecture Notes in Computer Science. Springer, 2009. Vol. 5781. P. 115–130.
21. Desikan P., Srivastava J. Mining Temporally Changing Web Usage Graphs // Proceedings of the International Workshop on Mining Web Data for Discovering Usage Patterns and Profiles. 2004. P. 1–17.
22. Inokuchi A., Washio T. A Fast Method to Mine Frequent Subsequences from Graph Sequence Data // Proceedings of the IEEE International Conference on Data Mining. 2008. P. 303–312.
23. Liu Z., Yu J., Ke Y., Lin X., Chen L. Spotting Significant Changing Subgraphs in Evolving Graphs // Proceedings of the 8th International Conference on Data Mining. 2008. P. 917–922.
24. Borgwardt K. M., Kriegel H.-P., Wackersreuther P. Pattern Mining in Frequent Dynamic Subgraphs // Proceedings of the IEEE International Conference on Data Mining. 2006. P. 818–822.
25. Liben-Nowell D., Kleinberg J. The Link Prediction Problem for Social Networks // Proceedings of the 12th International Conference on Information and Knowledge Management. N. Y.: ACM Press, 2003. P. 556–559.
26. Kumar R., Novak J., Raghavan P., Tomkins A. Structure and Evolution of Blogspace // Commun. ACM. 2004. Vol. 47. No. 12. P. 35–39.
27. Érétéo G., Gandon F., Buffa M., Corby O. Semantic Social Network Analysis // Proceedings of the 8th International Semantic Web Conference. 2009. P. 180–195.
28. Prokhorov A., Larichev N. Kompyuternaya vizualizatciya sotcialnykh setei // KompyuterPress. 2006. № 9. S. 156–160.
29. Huisman M., Marijtje A. J. van Duijn. A Reader's Guide to SNA Software // The SAGE Handbook of Social Network Analysis. SAGE. 2011. P. 578–600.

Publication information
Main title Vestnik NSU Series: Information Technologies, Volume 10, Issue No 4 (2012).
Parallel title: Novosibirsk State University Journal of Information Technologies Volume 10, Issue No 4 (2012).

Key title: Vestnik Novosibirskogo gosudarstvennogo universiteta. Seriâ: Informacionnye tehnologii
Abbreviated key title: Vestn. Novosib. Gos. Univ., Ser.: Inf. Tehnol.
Variant title: Vestnik NGU. Seriâ: Informacionnye tehnologii

Year of Publication: 2012
ISSN: 1818-7900 (Print), ISSN 2410-0420 (Online)
Publisher: Novosibirsk State University Press
DSpace handle


|Home Page| |All Issues| |Information for Authors| |Journal Boards| |Ethical principles| |Editorial Policy| |Contact Information| |Old Site in Russian|

inftech@vestnik.nsu.ru
© 2006-2017, Novosibirsk State University.