Novosibirsk State University Journal of Information Technologies
Scientic Journal

ISSN 2410-0420 (Online), ISSN 1818-7900 (Print)

Switch to

All Issues >> Contents: Volume 10, Issue No 3 (2012)

On the problems of biological neural networks simulations
S. S. Khairulin, N. V. Paliyanova, A. Yu. Paliyanov

A. P. Ershov Institute of Informatics Systems SB RAS
Institute of Molecular Biology and Biophysics SB RAS

UDC code: 004.032.26

Nowadays a significant amount of neurobiological studies, including human neurobiology, is being performed using modern methods, technologies and equipment, but scientists are still unison in opinions that we are still far from understanding of fundamental mechanisms of brain and consciousness functioning. Many researchers also suppose that we are, moreover, still far from understanding of a single neuron. Until this challenging puzzle remains unsolved we can only expect the real amount of knowledge and technology level intercepting the humanity from the success. In this paper the analysis of actual situation in computational neuroscience will be peformed, particularly the brain inverse-engineering problem – study of mechanisms underlying principles of living organisms’ nervous systems functioning and reproduction of them in the form of computer simulations. Also we’ll try to identify the most principal problems and discuss the ways of solving them, as well as further perspectives. A part of the paper is devoted to authors’ work on development of computer simulation of C. elegans nematode including its neuromuscular model.

Key Words
virtual organism, neurocybernetics, computer simulation, biological neural network

How to cite:
Khairulin S. S., Paliyanova N. V., Paliyanov A. Yu. On the problems of biological neural networks simulations // Vestnik NSU Series: Information Technologies. - 2012. - Volume 10, Issue No 3. - P. 46-57. - ISSN 1818-7900. (in Russian).

Full Text in Russian

Available in PDF

1. Karr J. R., Sanghvi J. C., Macklin D. N., Gutschow M. V., Jacobs J. M., Bolival B., Assad-Garcia N., Glass J. I., Covert M. W. A Whole-Cell Computational Model Predicts Phenotype from Genotype // Cell. 2012. Vol. 150 (2). R. 389–401.
2. Samoilov M. O. Mozg i adaptatciya: molekulyarno-kletochnyye mekhanizmy. M., 1999. 271 s.
3. Gutman A. Dendrity nervnykh kletok. Teoriya, elektrofiziologiya, funktciya. Vilnyus: Mokslas, 1984. 144 s.
4. Shredinger E. Razum i materiya. Izhevsk: RKhD, 2000. 96 s.
5. Alder B. J., Wainwright T. E. Studies in Molecular Dynamics. I. General Method // J. Chem. Phys. 1959. Vol. 31 (2). P. 459.
6. Markram H. The Blue Brain Project // Nature Reviews Neuroscience. 2006. Vol. 7. R. 153–160.
7. Kandel E. R., Schwartz J. H. Principles of Neural Science. 2nd ed. Elsevier, 1985. 1135 p.
8. White J. G., Southgate E., Thomson J. N., Brenner S. The Structure of the Nervous System of the Nematode Caenorhabditis Elegans // Phil. Trans. Royal Soc. L., 1986. B 314. R. 1–340.
9. Rankin C. H. Invertebrate Learning: What Can't a Worm Learn? // Current Biology. 2004. Vol. 14 (15). R. R617–8.
10. Palyanov A., Khayrulin S., Larson S. D., Dibert A. Towards A Virtual C. Elegans: A Framework for Simulation and Visualization of the Neuromuscular System in a 3D Physical Environment // Silico Biology. 2011/2012. Vol. 11. P. 137–147.
11. Huxley A. F. Muscle Structure and Theories of Contraction // Prog. Biophysics and Biophysical Chemistry. 1957. Vol. 7. R. 255–318.
12. Gleeson P., Crook S., Cannon R. C., Hines M. L., Billings G. O., Farinella V., Morse T. M., Davison A. P., Ray S., Bhalla U. S., Barnes S. R., Dimitrova Y. D., Silver R. A. NeuroML: A Language for Describing Data Driven Models of Neurons and Networks with a High Degree of Biological Detail // PLoS Comput. Biol. 2010. Vol. 6 (6). R. e1000815.
13. Jacklet J. W. Electrophysiological Organization of the Eye of Aplysia // J. Gen. Physiol. 1969. Vol. 53. R. 21–42.

Publication information
Main title Vestnik NSU Series: Information Technologies, Volume 10, Issue No 3 (2012).
Parallel title: Novosibirsk State University Journal of Information Technologies Volume 10, Issue No 3 (2012).

Key title: Vestnik Novosibirskogo gosudarstvennogo universiteta. Seriâ: Informacionnye tehnologii
Abbreviated key title: Vestn. Novosib. Gos. Univ., Ser.: Inf. Tehnol.
Variant title: Vestnik NGU. Seriâ: Informacionnye tehnologii

Year of Publication: 2012
ISSN: 1818-7900 (Print), ISSN 2410-0420 (Online)
Publisher: Novosibirsk State University Press
DSpace handle

|Home Page| |All Issues| |Information for Authors| |Journal Boards| |Ethical principles| |Editorial Policy| |Contact Information| |Old Site in Russian|
© 2006-2017, Novosibirsk State University.