Novosibirsk State University Journal of Information Technologies
Scientic Journal

ISSN 2410-0420 (Online), ISSN 1818-7900 (Print)

Switch to

All Issues >> Contents: Volume 12, Issue No 1 (2014)

A model of hydraulic fracturing with fracture plugging mechanizm
Petr Vladimirovich Karnakov, Vasily Nikolayevich Lapin, Sergei Grigoryevich Cherny

One-dimensional model of hydraulic fracturing with proppant transport is proposed. Proppant transport is simulated in one velosity approach. Viscosity of the mixture is written as a function of proppant concentration to take influence of proppant on fluid flow into account. Viscosity supposed to be equal to infinity if proppant concentration reaches the critical value. In order to simulate inequality of fluid and proppant velocity fields the original submodel of fluid filtration is introduced. The developed model allows to simulate the effect of fracture plugging that is observed in fields. Submodel of fluid filtration shows that proppant concentration in the plug at fracture tip decreases because of fluid filtration from the plug vicinity. The influence of pump schedule on fracture length is investigated using developed model.

Key Words
hydraulic fracturing, proppant transport, PKN-model, plug at fracture tip

How to cite:
Karnakov P. V., Lapin V. N., Cherny S. G. A model of hydraulic fracturing with fracture plugging mechanizm // Vestnik NSU Series: Information Technologies. - 2014. - Volume 12, Issue No 1. - P. 19-33. - ISSN 1818-7900. (in Russian).

Full Text in Russian

Available in PDF

1. Geertsma J., de Klerk F. A rapid method of predicting width and extent of hydraulically induced fractures // J. Petrol Technol. 1969. № 12. P. 1571–1581.
2. Nordgren R. P. Propagation of a vertical hydraulic fracture // Soc. Petrol. Eng. Journal. 1972. Vol. 12. No. 4. P. 306–314.
3. Entov V. M., Zazovsky A. F., Stelin I. B., Kharaidze D. M. Odnomernaya model rasprostraneniya treshchiny gidrorazryva // Materialy IX Vsesoyuz. seminara «Chislennyye metody resheniya zadach filtratcii. Dinamika mnogofaznykh sred». Yakutsk, 1988. Novosibirsk: ITPM SO AN SSSR, 1989. S. 91–95.
4. Sheddon I. N., Elliott A. A. The opening of a griffith crack under internal pressure // Quarterly of Appl. Math. 1946. № 4. P. 262–267.
5. Carter R. D. Derivation of the general equation for estimating the extent of the fractured area // Howard G. C., Fast C. R. (eds.) Optimum fluid characteristics for fracture extension, Drilling and Production Practices. N. Y.: American Petroleum Institute, 1957. P. 261–270.
6. Landau L. D., Lifshitc E. M. Teoreticheskaya fizika: Ucheb. posob. dlya vuzov: V 10 t. 5-e izd., stereotip. M.: FIZMATLIT, 2001. T. 6: Gidrodinamika. 736 s.
7. Mueller S., Llewellin E. W., Mader H. M. The rheology of suspensions of solid particles // Proc. R. Soc. A, 2010. Vol. 466. P. 1201–1228.
8. Maron S. H.,Pierce P. E. Application of Ree-Eyring generalized flow theory to suspensions of spherical particles // J. Colloid Sci. 1956. Vol. 11. P. 80–95.

Publication information
Main title Vestnik NSU Series: Information Technologies, Volume 12, Issue No 1 (2014).
Parallel title: Novosibirsk State University Journal of Information Technologies Volume 12, Issue No 1 (2014).

Key title: Vestnik Novosibirskogo gosudarstvennogo universiteta. Seriâ: Informacionnye tehnologii
Abbreviated key title: Vestn. Novosib. Gos. Univ., Ser.: Inf. Tehnol.
Variant title: Vestnik NGU. Seriâ: Informacionnye tehnologii

Year of Publication: 2014
ISSN: 1818-7900 (Print), ISSN 2410-0420 (Online)
Publisher: Novosibirsk State University Press
DSpace handle

|Home Page| |All Issues| |Information for Authors| |Journal Boards| |Ethical principles| |Editorial Policy| |Contact Information| |Publication fee| |Open Access Policy| |Old Site in Russian|
© 2006-2018, Novosibirsk State University.