Novosibirsk State University Journal of Information Technologies
Scientic Journal

ISSN 2410-0420 (Online), ISSN 1818-7900 (Print)

Switch to

All Issues >> Contents: Volume 14, Issue No 3 (2016)

Application of Massively Parallel Systems to Organize Streaming Processing of Sar Data
Vadim Petrovich Potapov, Semen Evgenevich Popov, Mihail Aleksandrovich Kostylev

Institute of Computational Technologies SB RAS

UDC code: 004.042

This article presents a modern approach of creating of distributed program complex based on mass-parallel technology Apache Spark for pre- and postprocessing of sar images. The unique feature of system is ability to work in real time mode with a huge amounts of streaming data and also ability to apply existed algorithms that are not used for distributed processing on multiple nodes without changing of algorithms implementation. There is a comparison of distributed processing technologies, the common description of cluster and mechanism of executing task of pre- and postprocessing sar images, also the features of exact tasks implementation in proposed approach are shown. In the conclusion there are the results of testing of developed algorithms on demonstration cluster.

Key Words
Apache Spark, Apache Hadoop, distributed information systems, sar interfometry, processing algorithms

How to cite:
Potapov V. P., Popov S. E., Kostylev M. A. Application of Massively Parallel Systems to Organize Streaming Processing of Sar Data // Vestnik NSU Series: Information Technologies. - 2016. - Volume 14, Issue No 3. - P. 69-80. - ISSN 1818-7900. (in Russian).

Full Text in Russian

Available in PDF

1. Elizavetin I. V., Shuvalov R. I., Bush V. A. Printcipy i metody radiolokatcionnoi syyemki dlya tcelei formirovaniya tcifrovoi modeli mestnosti // Geodeziya i kartografiya. 2009. № 1. S. 39–45.
2. Ferretti A., Monti-Guarnieri A., Prati C., Rocca F., Massonnet D. InSAR Principles: Guidelines for SAR Interferometry Processing and Interpretation. ESA Publications. 2007. TM-19.
3. Zhengxiao Li, James Bethel. Image coregistration in sar interferometry // The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. 37. Part B1. Beijing, 2008. R. 433–438.
4. Massonnet D., Feigl K. L. Radar interferometry and its application to changes in the earth’s surface // Reviews of Geophysics. 1998. Vol. 36 (4). P. 441–500.
5. Costantini M., Farina A., Zirilli F. A fast phase unwrapping algorithm for SAR interferometry // IEEE Trans. GARS. 1999.Vol. 37. No. 1. P. 452–460.
6. Mistry P., Braganza S., Kaeli D., Leeser M. Accelerating phase unwrapping and affine transformations for optical quadrature microscopy using CUDA // Proc. of 2nd Workshop on General Purpose Processing on Graphics Processing Units, GPGPU 2009. Washington, DC, USA, 2009.
7. Karasev P. A., Campbell D. P., Richards M. A. Obtaining a 35x Speedup in 2D Phase Unwrapping Using Commodity Graphics Processors // Radar Conference. 2007 IEEE. P. 574–578.
8. Verba V. S., Neronsky L. B., Osipov I. G., Turuk V. E. Radiolokatcionnyye sistemy zemleobzora kosmicheskogo bazirovaniya. M.: Radiotekhnika, 2010. 675 s.
9. Zhenhua Wu, Wenjing Ma, Guoping Long, Yucheng Li, Yucheng Li, Yucheng Li. High Performance Two-Dimensional Phase Unwrapping on GPUs // Proc. of the 11th ACM Conference on Computing Frontiers – CF '14. 2014.
10. Shi Xin-Liang, Xie Xiao-Chun. GPU acceleration of range alignment based on minimum entropy criterion // Radar Conference 2013, IET International. 14-16 April 2013. P. 1–4.
11. Guerriero A., Anelli1 V. W., Pagliara1 A., Nutricato R., Nitti D. O. High performance GPU implementation of InSAR time-consuming algorithm kernels // Proc. of the 1st Workshop on the State of the art and Challenges Of Research Efforts at POLIBA. 2014. p. 383
12. Fan Zhang, Bing-nan Wang, Mao-sheng Xiang. Accelerating InSAR raw data simulation on GPU using CUDA. Geoscience and Remote Sensing Symposium (IGARSS), 2010 IEEE International. 25–30 July 2010. P. 2932–2935.
13. Marinkovic, P. S., Hanssen, R. F., Kampes, B. M. Utilization of Parallelization Algorithms in InSAR/PS-InSAR Processing // Proceedings of the 2004 Envisat ERS Symposium (ESA SP572). 6–10 September 2004. P. 1–7
14. Gao Sheng, Zeng Qi-ming, Jiao Jian, Liang Cun-ren, Tong Qing-xi. Parallel processing of InSAR interferogram filtering with CUDA programming // Science of Surveying and Mapping. 2015. No. 1. P. 54–68.
15. Feoktistov A. A., Zakharov A. I., Gusev M. A., Denisov P. V. Issledovaniye vozmozhnostei metoda malykh bazovykh liny na primere modulya SBaS programmnogo paketa SARScape i dannykh RSA ASAR/ENVISat i PALSAR/ALOS. Chast 1. Klyuchevyye momenty metoda // Zhurnal radioelektroniki. 2015. № 9. S. 1–26.
16. Reyes-Ortiz J. L., Oneto L., Anguita D. Big Data Analytics in the Cloud: Spark on Hadoop vs MPI/OpenMP on Beowulf // INNS Conference on Big Data 2015 Program San Francisco. 8–10 August 2015. P. 121–130
17. Prakasam Kannan. Beyond Hadoop MapReduce Apache Tez and Apache Spark. San Jose State University. URL: (data obrashcheniya 02.08.2016).
18. Potapov V. P., Popov S. E. Vysokoproizvoditelny algoritm rosta regionov dlya razvertki interferometricheskoi fazy na baze tekhnologii CUDA // Programmnaya inzheneriya. 2016. № 2. C. 61–74. DOI: 10.17587/prin.7.61-74

Publication information
Main title Vestnik NSU Series: Information Technologies, Volume 14, Issue No 3 (2016).
Parallel title: Novosibirsk State University Journal of Information Technologies Volume 14, Issue No 3 (2016).

Key title: Vestnik Novosibirskogo gosudarstvennogo universiteta. Seriâ: Informacionnye tehnologii
Abbreviated key title: Vestn. Novosib. Gos. Univ., Ser.: Inf. Tehnol.
Variant title: Vestnik NGU. Seriâ: Informacionnye tehnologii

Year of Publication: 2016
ISSN: 1818-7900 (Print), ISSN 2410-0420 (Online)
Publisher: Novosibirsk State University Press
DSpace handle

|Home Page| |All Issues| |Information for Authors| |Journal Boards| |Ethical principles| |Editorial Policy| |Contact Information| |Old Site in Russian|
© 2006-2017, Novosibirsk State University.