Novosibirsk State University Journal of Information Technologies
Scientic Journal

ISSN 2410-0420 (Online), ISSN 1818-7900 (Print)

Switch to
Russian

All Issues >> Contents: Volume 14, Issue No 2 (2016)

Model-theoretic methods of generation of knowledge about mobile subscribers’ preferences
Ekaterina Vladimirovna Dolgusheva, Dmitry Evgenievich Palchunov

Sobolev Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences
Novosibirsk State University

UDC code: 004.04

Abstract
The article is devoted to methods of generation of knowledge about types of tariffs and services of mobile operator that might be useful for а given mobile network subscriber. We provide knowledge generation on the base of analysis of the set of precedents – impersonal mobile network subscriber profiles. These methods are based on the model-theoretic approach to domain formalization and on Formal Concept Analysis. The Ontological Model of the domain is constructed on the base of integration of knowledge extracted from users’ profiles and descriptions of existing tariffs and services. Formal concept analysis and association rules mining are using for generation of knowledge about tariffs and services that might be interesting for mobile network subscribers.

Key Words
mobile networks, subscribers of mobile networks, ontology model, generation of knowledge, model-theoretic methods, formal concept analysis, association rules

How to cite:
Dolgusheva E. V., Palchunov D. E. Model-theoretic methods of generation of knowledge about mobile subscribers’ preferences // Vestnik NSU Series: Information Technologies. - 2016. - Volume 14, Issue No 2. - P. 5-16. - ISSN 1818-7900. (in Russian).

Full Text in Russian

Available in PDF

References
1. Pal'chunov D. Lattices of Relatively Axiomatizable Classes // ICFCA 2007, Vol. LNAI 4390, 2007, p. 221–239.
2. Palchunov D. E. The solution of the problem of information retrieval based on ontologies // Bisnes-informatika, 2008, no. 1, p. 3–13 (in Russ.).
3. Palchunov D. E. Modeling of reasoning and formalization of reflection II: Ontologies and formalization of concepts // Filosofiya nauki, 2008, no. 2 (37), p. 62–99 (in Russ.).
4. Palchunov D. E. Virtual catalog: the ontology-based technology for information retrieval // Knowledge Processing and Data Analysis. LNAI 6581. Springer-Verlag Berlin Heidelberg. 2011, p. 164–183.
5. Palchunov D. E., Stepanov P. A. The use of model-theoretic methods for extracting ontological knowledge in the domain of information security // Programnaya ingeneriya, 2013, no. 11, p. 8–16. (in Russ.)
6. Makhasoeva O. G., Palchunov D. E. Semi-automatic methods of a construction of the atomic diagrams from natural language texts // Vestnik NSU, series: Informaсionnye tehnologii, 2014, vol. 12, no. 2, p. 64–73. (in Russ.)
7. Derevyanko D. V., Palchunov D. E. Formal methods of development of the questionanswering system on natural language // Vestnik NSU, series: Informaсionnye tehnologii, 2014, vol. 12, no. 3, p. 34–47 (in Russ.).
8. Naidanov C. A., Palchunov D. E., Sazonova P. A. Model-theoretic methods of integration of knowledge extracted from medical documents // Vestnik NSU Series: Information Technologies. 2015, vol. 13, Iss. 3, p. 29–41. ISSN 1818-7900. (in Russ.)
9. Palchunov D. E., Yakhyyayeva G. E., Yasinskaya O. V. Application of model-theoretic methods and ontological modeling to automate the diagnosis of diseases // Vestnik NSU Series: Information Technologies, 2015, vol. 13, Issue 3, p. 42–51. ISSN 1818-7900. (in Russ.)
10. Ustundag A., Bal M. Evaluating Market Basket Data with Formal Concept Analysis // Proc. Chaos, Complexity and Leadership, 2012.
11. Han J., Pregibon D., Mannila H., Kumar V., Altman R. B. Emerging scientific applications in data mining // Communications of the ACM – Evolving data mining into solutions for insights. 2002, vol. 45, no. 8, p. 54–58.
12. Surendiran R., Rajan K. P., Sathish Kumar M. Study on the Customer targeting using Association Rule Mining // International Journal on Computer Science and Engineering, 2010, vol. 2, no. 7, p. 2483–2484.
13. Han J., Pei J., Yin Y. Mining Frequent Patterns without Candidate Generation // Data Mining and Knowledge Discovery, 2004, vol. 8, no. 1, p. 53–87.
14. Pravin A. P., Aggarwal A. K. Associative Rule Mining of Mobile Data Services Usage for Preference Analysis, Personalization & Promotion // Proc. WSEAS. 2004.
15. Agrawal R., Imieliński T., Swami A. Mining association rules between sets of items in large databases // Proc. ACM SIGMOD International conference on Management of data. 1993, p. 207–216.
16. Bosc P., Pivert O., Prade H., On fuzzy association rules based on fuzzy cardinalities // Proc. The 10th IEEE International Conference. 2001, p. 461–464.
17. Chueh H.-E., Lin N. P., Jan N.-Y. Mining Target-oriented Fuzzy Correlation Rules // Proc. International Conference on Advances in Social. 2009.
18. Lin N. P., Chueh H.-E. Fuzzy Correlation Rules Mining // Proc. 6th WSEAS International Conference on Applied Computer Science. 2007.
19. Chueh H.-E. Mining target-oriented fuzzy correlation rules to optimize telecom service management // International Journal of Computer Science & Information Technology, 2011, vol. 3, no. 1, p. 74–83.
20. Furletti B., Gabrielli L., Renso C., Rinzivillo S. Analysis of GSM calls data for understanding user mobility behavior // IEEE Big Data International Conference. 2013, p. 550–555.
21. Wille R. Restructuring Lattice Theory: an Approach Based on Hierarchies of Concepts // Ordered Sets / Ed. by I. Rival. Dordrecht; Boston: Reidel. 1982. P. 445–470.
22. Ganter B., Wille R. Formal Concept Analysis: Mathematical Foundations // Heidelberg: Springer, 1999.
23. Borgelt C. Efficient Implementations of Apriori and Eclat // Proc. 1st IEEE ICDM Workshop on Frequent Item Set Mining Implementations. 2003.
24. Agrawal R., Srikant R. Fast Algorithms for Mining Association Rules in Large Databases // Proc. 20th International Conference on Very Large Data Bases, 1994, p. 487–499.

Publication information
Main title Vestnik NSU Series: Information Technologies, Volume 14, Issue No 2 (2016).
Parallel title: Novosibirsk State University Journal of Information Technologies Volume 14, Issue No 2 (2016).

Key title: Vestnik Novosibirskogo gosudarstvennogo universiteta. Seriâ: Informacionnye tehnologii
Abbreviated key title: Vestn. Novosib. Gos. Univ., Ser.: Inf. Tehnol.
Variant title: Vestnik NGU. Seriâ: Informacionnye tehnologii

Year of Publication: 2016
ISSN: 1818-7900 (Print), ISSN 2410-0420 (Online)
Publisher: Novosibirsk State University Press
DSpace handle


|Home Page| |All Issues| |Information for Authors| |Journal Boards| |Ethical principles| |Editorial Policy| |Contact Information| |Old Site in Russian|

inftech@vestnik.nsu.ru
© 2006-2017, Novosibirsk State University.