Novosibirsk State University Journal of Information Technologies
Scientic Journal

ISSN 2410-0420 (Online), ISSN 1818-7900 (Print)

Switch to

All Issues >> Contents: Volume 13, Issue No 4 (2015)

Neuro-fuzzy system for the choice of intersegment interval in a telecommunication network
Konstantin Aleksandrovich Polshchikov

Belgorod State National Research University

UDC code: 621.396.9

Article is devoted to the design of a neuro-fuzzy system for the choice of intersegment interval in the telecommunication network. A five-layer structure of the system is proposed. The features of its configuration and operation are outlined. The data on the effectiveness of the neuro-fuzzy choice of intersegment interval obtained by simulation experiments are submitted.

Key Words
Neuro-fuzzy system, Intersegment interval, Telecommunications network, Rate of data sending, Segment

How to cite:
Polshchikov K. A. Neuro-fuzzy system for the choice of intersegment interval in a telecommunication network // Vestnik NSU Series: Information Technologies. - 2015. - Volume 13, Issue No 4. - P. 33-42. - ISSN 1818-7900. (in Russian).

Full Text in Russian

Available in PDF

1. Allman M., Paxson V., Blanton E. TCP Congestions control. RFC 5681. URL:
2. Koucheryavy Y. A. Traffic control and quality of service in the Internet. St. Petersburg, Science and Technology, 2004, 336 с.
3. Alekseev I. V., Sokolov V. A. ARTCP: Efficient Algorithm for Transport Protocol for Packet Switched Networks // Proc. of PaCT’2001. Springer–Verlag, 2001. Vol. 2127. P. 159–174.
4. Rvacheva N. V. Method of intersegment interval control of telecommunications network based on the application of fuzzy inference // Control systems, navigation and communication, 2010, Vol. 2 (14), P. 231–236.
5. Polshchykov K. O., Zdorenko Y. M. An improved method for neuro-fuzzy dropping packets control in transit routers of telecommunications network // Problems of telecommunications, 2014, № 2 (14), P. 76–90.
6. Uskov A. A, Kuzmin A. V. Intelligent control technology. Artificial neural networks and fuzzy logic. Moscow, Hotline–Telecom, 2004. 143 p.
7. Polshchykov K. O. Synthesis of neuro-fuzzy systems of data flows intensity control in mobile ad-hoc network // Microwave and Telecommunication Technology (CriMiCo), 23rd International Crimean Conference, 2013, P. 517–518.
8. Polshchykov K. O. General models of neuro-fuzzy systems control the intensity of data flows in a mobile radio network // Science and Education a New Dimension. Budapest, 2013, Vol. 8, P. 133–137.
9. Polshchykov K. A., Kubrakova K. N., Krasnobaev V. A. Neuro fuzzy model of mean real time traffic request arrival intensity prediction in a telecommunication network channel // Information processing systems, 2014, no. 2 (118), P. 193–197.
10. Takagi Т., Sugeno М. Fuzzy identification of systems and its applications to modeling and control // IEEE Transactions on Systems, Man, and Cybernetics. Vol. 15. No 1. 1985. P. 116–132.
11. Rumelhart D. E., Hinton G. E., Williams R. J. Learning Internal Representations by Error Propagation // Parallel Distributed Processing. Cambridge, MIT-Press, 1986, T. 1, P. 318–362.
12. Leonenkov A .V. Fuzzy modeling in MATLAB and fuzzyTECH. St. Petersburg, BHVPetersburg, 2003, 736 p.

Publication information
Main title Vestnik NSU Series: Information Technologies, Volume 13, Issue No 4 (2015).
Parallel title: Novosibirsk State University Journal of Information Technologies Volume 13, Issue No 4 (2015).

Key title: Vestnik Novosibirskogo gosudarstvennogo universiteta. Seriâ: Informacionnye tehnologii
Abbreviated key title: Vestn. Novosib. Gos. Univ., Ser.: Inf. Tehnol.
Variant title: Vestnik NGU. Seriâ: Informacionnye tehnologii

Year of Publication: 2015
ISSN: 1818-7900 (Print), ISSN 2410-0420 (Online)
Publisher: Novosibirsk State University Press
DSpace handle

|Home Page| |All Issues| |Information for Authors| |Journal Boards| |Ethical principles| |Editorial Policy| |Contact Information| |Old Site in Russian|
© 2006-2017, Novosibirsk State University.