Novosibirsk State University Journal of Information Technologies
Scientic Journal

ISSN 2410-0420 (Online), ISSN 1818-7900 (Print)

Switch to
Russian

All Issues >> Contents: Volume 13, Issue No 2 (2015)

Identifying time intervals of brain activity in a problem solving process by estimation of negentropy of an electroencephalogram
Kirill Vadimovich Chagin, Aleksandr Nikolayevich Savostyanov

Novosibirsk State University
Institute of Physiology and Fundamental Medicine SB RAMS

UDC code: 004.021:612.82

Abstract
A new software system is developed. It allows to identify time intervals that represent «inclusion» and «cessation» of a brain in a problem solving process. The base assumption of that work is that distribution of the amplitude of signal that represents brain activity is significantly different from a Gaussian distribution. Since defined time intervals represents brain dynamics, the developed system allows a more accurate analysis of brain activity and event-related spectral perturbations.

Key Words
electroencephalography, negentropy, independent component analysis

How to cite:
Chagin K. V., Savostyanov A. N. Identifying time intervals of brain activity in a problem solving process by estimation of negentropy of an electroencephalogram // Vestnik NSU Series: Information Technologies. - 2015. - Volume 13, Issue No 2. - P. 116–122. - ISSN 1818-7900. (in Russian).

Full Text in Russian

Available in PDF

References
1. Makeig S. Auditory Event-Related Dynamics of the EEG Spectrum and Effects of Exposure to Tones. Electroencephalography and Clinical Neurophysiology, 1993, vol. 86, p. 283–293.
2. Vigário R., Särelä J., Jousmäki V., Hämäläinen M., Oja E. Independent component approach to the analysis of EEG and MEG recordings. IEEE Trans Biomed Eng, 2000, vol. 47 (5), p. 589–93.
3. Levin E. A., Savostyanov A. N., Lazarenko D. O., Knyazev G. G. Human Brain Oscillatory Activity in activation and inhibition of motor reactions. Rev. of SB RAMS, 2007, vol. 3 (125), p. 64–72.
4. Pfurtscheller G. Event-related cortical desynchronization detected by power measurements of scalp EEG. Electroencephalography and Clinical Neurophysiology, 1977, vol. 42 (6), p. 817–826.
5. Niedermeyer E., da Silva F. L. Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. Philadelphia, Lippincott Williams & Wilkins, 2005.
6. Hyvarinen A., Karhunen J., Oja E. Independent component analysis. 1st ed. New York, J. Wiley, 2002.
7. Stone J. V. Independent component analysis: a tutorial introduction. Cambridge, Mass., MIT Press, 2004.
8. Bell A. J., Sejnowski T. J. An Information-Maximization Approach to Blind Separation and Blind Deconvolution. Neural Comput., 1995, vol. 7, p. 1129–1159.
9. Onton J., Makeig S. Information-based modeling of event-related brain dynamics. Progress in brain research, 2006, vol. 159, p. 99–120.
10. Pfurtscheller G., Aranibar A. Evaluation of event-related desynchronization (ERD) preceding and following voluntary selfpaced movement. Electroencephalography and Clinical Neurophysiology, 1979, vol. 46, p. 138–46.
11. Delorme A., Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 2004, vol. 134, p. 9–21. 12. Hyvärinen A. New approximations of differential entropy for independent component analysis and projection pursuit. Advances in Neural Information Processing Systems, 1998, vol. 10, p. 273–279.
13. Kochetov Yu., Mladenovich N., Khansen P. Local search with alternating neighborhoods. Diskretn. Anal. Issled. Oper., Ser. 2, 2003, vol. 10 (1), p. 11–43.
14. Savostyanov A. N., Tsai A. C., Liou M., Levin E. A., Lee J. D., Yurganov A. V., Knya- zev G. G. EEG-correlates of trait anxiety in the stop-signal paradigm. Neuroscience Letters, 2009, vol. 449 (2), p. 112–116.

Publication information
Main title Vestnik NSU Series: Information Technologies, Volume 13, Issue No 2 (2015).
Parallel title: Novosibirsk State University Journal of Information Technologies Volume 13, Issue No 2 (2015).

Key title: Vestnik Novosibirskogo gosudarstvennogo universiteta. Seriâ: Informacionnye tehnologii
Abbreviated key title: Vestn. Novosib. Gos. Univ., Ser.: Inf. Tehnol.
Variant title: Vestnik NGU. Seriâ: Informacionnye tehnologii

Year of Publication: 2015
ISSN: 1818-7900 (Print), ISSN 2410-0420 (Online)
Publisher: Novosibirsk State University Press
DSpace handle


|Home Page| |All Issues| |Information for Authors| |Journal Boards| |Ethical principles| |Editorial Policy| |Contact Information| |Old Site in Russian|

inftech@vestnik.nsu.ru
© 2006-2017, Novosibirsk State University.