Novosibirsk State University Journal of Information Technologies
Scientic Journal

ISSN 2410-0420 (Online), ISSN 1818-7900 (Print)

Switch to

All Issues >> Contents: Volume 13, Issue No 1 (2015)

Three-dimensional dual boundary element method for elasticity problems with cracks
Dmitry Sergeyevich . Kuranakov, Denis Viktorovich Esipov, Vasily Nikolayevich Lapin, Sergei Grigoryevich Cherny

Institute of Computational Technologies SB RAS
UDC code: 519.64

Three-dimensional dual boundary element method for elasticity problems with regular boundary and with cracks is developed. Conventional boundary element method consists in numerical solution of displacement boundary equation on regular boundary of the elastic body. In case of the body with cracks displacement boundary equation degenerates on the crack surface. Therefore in dual boundary element method it is suggested to solve traction boundary integral equation on the crack surface. Integrals in this equation have the singularity of high order and are considered as Cauchy and Hadamard principal values. Substraction of singularity is used for their evaluation. This method consists in derivation of Lourent series of the functions under integral sign and special method of integration of the first members of the series. Dual boundary element method is verified by the problem of penny-shaped fracture in unbounded material. The method shows high accuracy in calculation of stress and displacement fields, as well as stress intensity factors at the front of the fracture.

Key Words
linear elasticity, boundary element method, three-dimensional modeling, crack, stress intensity factors

How to cite:
Kuranakov D. S., Esipov D. V., Lapin V. N., Cherny S. G. Three-dimensional dual boundary element method for elasticity problems with cracks // Vestnik NSU Series: Information Technologies. - 2015. - Volume 13, Issue No 1. - P. 74-90. - ISSN 1818-7900. (in Russian).

Full Text in Russian

Available in PDF

1. Esipov D. V., Kuranakov D. S., Lapin V. N., Cherny S. G. Mnogozonny metod granichnykh elementov i ego primeneniye k zadache initciatcii treshchiny gidrorazryva iz perforirovannoi obsazhennoi skvazhiny // Vychislitelnyye tekhnologii. 2011. T. 16. № 6. S. 13–26.
2. Alekseenko O. P., Potapenko D. I., Cherny S. G., Esipov D. V., Kuranakov D. S., Lapin V. N. 3D Modeling of fracture initiation from perforated non-cemented wellbore // SPE J. 2013. Vol. 18, No. 3. P. 589–600.
3. Alekseyenko O. P., Esipov D. V., Kuranakov D. S., Lapin V. N., Cherny S. G. Dvumernaya poshagovaya model rasprostraneniya treshchiny gidrorazryva // Vestn. Novosib. gos. un-ta. Seriya: Matematika, mekhanika, informatika. 2011. T. 11, № 3. S. 36–59.
4. Rizzo F. J. An Integral Equation Approach to Boundary Value Problems of Classical Elastostatics // Quart. J. of Applied Mathematics. 1967. Vol. 25. P. 83–95.
5. W. Thomson (Lord Kelvin), On the equations of equilibrium of an elastic solid // Cambr. Dubl. Math. J. 1848. Vol. 3. P. 87-89.
6. Kupradze V. D. Metody teorii potentciala v teorii uprugosti. 1963. M.: Nauka. 472 s.
7. Aliabadi M. H. The Boundary Element Method: Vol. 2. Applications in Solids and Structures. 2002. John Wiley and Sons Ltd., 598 p.
8. Mi Y., Aliabadi M. H. Dual boundary element method for three-dimensional fracture mechanics analysis. Engineering. Analysis. 1992. Vol. 10. No. 2. p. 161-171.
9. Cisilino A. P., Aliabadi M. H. Three-dimensional BEM analysis for fatigue crack growth in welded components // Int. J. for Pressure Vessel and Piping. 1997. Vol. 70. P. 135–144.
10. Guiggiani M., Krishnasamy G., Rudolphi T. J., Rizzo F. J. A general algorithm for numerical solution of hypersingular equations // J. Appl. Mech. 1990. Vol. 57. P. 906–915.
11. Lachat J. C., Watson J. O. Effective numerical treatment of boundary integral equations: A formulation for three-dimensional elastostatics // Int. J. for Numerical Methods in Engineering. 1976. Vol. 10. P. 991–1005.
12. Hadamard J. Lectures on Cauchy's problem in linear partial differential equations. New Haven: Yale University Press, 1923. 316 p.
13. Sneddon, I. N., Elliott, H. A. The Opening of a Griffith Crack Under Internal Pressure // Quart. Appl. Math. 1946. Vol. 4, P. 262.
14. Murakami Y.(Editor-in-Chief) Stress Intensity Factors Handbook. Pergamon Press, 1987.
15. Tada H., Paris P., Irwin G. The Stress Analysis of Cracks Handbook. ASME Press, NY 2000. 3rd ed.

Publication information
Main title Vestnik NSU Series: Information Technologies, Volume 13, Issue No 1 (2015).
Parallel title: Novosibirsk State University Journal of Information Technologies Volume 13, Issue No 1 (2015).

Key title: Vestnik Novosibirskogo gosudarstvennogo universiteta. Seriâ: Informacionnye tehnologii
Abbreviated key title: Vestn. Novosib. Gos. Univ., Ser.: Inf. Tehnol.
Variant title: Vestnik NGU. Seriâ: Informacionnye tehnologii

Year of Publication: 2015
ISSN: 1818-7900 (Print), ISSN 2410-0420 (Online)
Publisher: Novosibirsk State University Press
DSpace handle

|Home Page| |All Issues| |Information for Authors| |Journal Boards| |Ethical principles| |Editorial Policy| |Contact Information| |Publication fee| |Open Access Policy| |Old Site in Russian|
© 2006-2018, Novosibirsk State University.